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Abstract

Particle-in-cell (PIC) simulations are a useful tool in modeling plasma in physical devices. The Yee finite difference

time domain (FDTD) method is commonly used in PIC simulations to model the electromagnetic fields. However, in

the Yee FDTD method, poorly resolved waves at frequencies near the cut off frequency of the grid travel slower than

the physical speed of light. These slowly traveling, poorly resolved waves are not a problem in many simulations

because the physics of interest are at much lower frequencies. However, when high energy particles are present, the par-

ticles may travel faster than the numerical speed of their own radiation, leading to non-physical, numerical Cerenkov

radiation. Due to non-linear interaction between the particles and the fields, the numerical Cerenkov radiation couples

into the frequency band of physical interest and corrupts the PIC simulation. There are two methods of mitigating the

effects of the numerical Cerenkov radiation. The computational stencil used to approximate the curl operator can be

altered to improve the high frequency physics, or a filtering scheme can be introduced to attenuate the waves that cause

the numerical Cerenkov radiation. Altering the computational stencil is more physically accurate but is difficult to

implement while maintaining charge conservation in the code. Thus, filtering is more commonly used. Two previously

published filters by Godfrey and Friedman are analyzed and compared to ideally desired filter properties.
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1. Introduction

The electromagnetic fields in many particle-in-cell (PIC) simulations are computed using the finite dif-

ference time domain (FDTD) method first introduced by Kane Yee [1–3]. The Yee FDTD method is a

very simple, robust tool for electromagnetic simulation; however, it is also known to suffer from aniso-
tropic numerical phase error. This numerical dispersion error causes the numerical wave propagation

speed to be slower than the physical wave propagation speed. The error is small at low frequency, be-

comes more severe at higher frequency and is most severe near the highest frequency supported by

the computational grid. Thus, in purely electromagnetic simulations (i.e., simulations without charged

particles), a grid with sufficiently small cells relative the the wavelengths of interest keeps the error at

an acceptable level. However, when high-energy particles enter a PIC simulation, the situation changes

drastically.

High-energy particles cause problems because, while their velocities cannot exceed the physical prop-
agation speed of electromagnetic waves, they may exceed the numerical wave propagation speed, partic-

ularly near the highest frequency supported by the computational grid. This results in the appearance of

non-physical, numerical Cerenkov radiation. The high frequencies that give rise to numerical Cerenkov

radiation are poorly resolved by the simulation, and the physics of interest are typically at much lower

frequencies. However, because of the nonlinear interaction between the particles and the electromagnetic

fields, the numerical Cerenkov radiation couples into the frequencies of interest and corrupts the simu-

lation. Thus, for a physically accurate PIC simulation, the numerical Cerenkov radiation must be

eliminated.
There are two methods of dealing with numerical Cerenkov radiation. First, the computational sten-

cil used to approximate the curl operator in the Yee FDTD method can be changed, resulting in new

(and possibly improved) numerical dispersion characteristics. Second, a filter can be added to the Yee

FDTD method to attenuate high-frequency waves, slowing or eliminating the growth of the numerical

Cerenkov radiation. The second method is more common with the methods published by Godfrey [4],

Friedman [5] and Rambo et al. [6] being examples of filtering to remove numerical Cerenkov

radiation.

The remainder of this paper compares and contrasts various methods of eliminating numerical Cerenkov
radiation in PIC simulations. Section 2 gives some background on the dispersion relation of the Yee FDTD

method and shows the source of the numerical Cerenkov radiation. Section 3 introduces the concept of

changing the computational stencil for the curl operator and gives examples of improved numerical disper-

sion characteristics. Section 4 introduces the idea of filtering and provides a suggestion for the ideal filter.

The previously introduced Godfrey and Friedman filters are analyzed and compared, and numerical exam-

ples are given. A literature search failed to find a detailed numerical analysis of the Godfrey scheme; the

dispersion relation of the Friedman scheme is first given in [7]. The general analysis of Section 4 facilitates

the direct comparison of the different schemes. Section 5 wraps up with a conclusion.
2. Yee FDTD background

The Yee FDTD method employs a cubic lattice of cells to approximate Maxwell�s curl equations, given
by:
oB

ot
¼ �r� E;

oE

ot
¼ c2r� B� gcJ;

ð1Þ



Fig. 1. Placement of the field components in the Yee FDTD method.
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where c is the speed of light in the medium and g is the wave impedance. It achieves second order accuracy

by staggering the placement of E and B in both space and time and approximating all derivative operators

by centered finite differences. The electric fields (E) are placed on cell edges and the magnetic flux densities

(B) are placed on cell faces, as shown in Fig. 1, and the electric fields are known at timesteps nDt while the
magnetic flux densities are known at timesteps (n + 1/2)Dt.

In the Yee FDTD grid, electromagnetic waves propagate according to the dispersion relation
1

cDt
sin

xDt

2

� �� �2
¼ 1

Dx
sin

kxDx

2

� �� �2
þ 1

Dy
sin

kyDx

2

� �� �2
þ 1

Dz
sin

kzDx

2

� �� �2
; ð2Þ
where x is the radian time frequency, and kx, ky, and kz are the wavenumbers of the propagation parallel to

the associated coordinate directions. In contrast, electromagnetic waves in real, physical space propagate

according to
x2

c2
¼ k2x þ k2y þ k2z ¼ k2: ð3Þ
The Yee FDTD dispersion relation is seen to approximate the physical dispersion relation (Eq. (3))

at low frequency as shown in Fig. 2. Note that the numerical dispersion relation approximates the
physical dispersion relation exactly up to the highest frequency the grid can support when the wave

propagation is along a three dimensional (3D) diagonal of the grid and Dt = Dt,max. For all other direc-

tions of propagation and timesteps, the propagation speed becomes slower than the physical speed of

light (c) at high frequency. If charged particles travel at 0.8c in the simulation, note that the wave dis-

persion curves cross the particle speed line at high frequency, indicating the presence of numerical Cere-

nkov radiation. Note that the axes in Fig. 2 are normalized to D, indicating that the problem cannot be

alleviated by refining the grid.
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3. Altering the computational stencil

Altering the computational stencil involves changing the approximation to the spatial derivatives for the

FDTD method. The standard Yee FDTD method uses second order centered finite differences to approx-
imate all spatial derivatives. Thus $ · E to update the Bz value at the center if Fig. 3 is computed using the

Ex and Ey values shown in green as
ẑ � r � Eð ÞIþ1=2;Jþ1=2;K ¼ Ey;Iþ1;Jþ1=2;K � Ex;Iþ1=2;Jþ1;K � Ey;I ;Jþ1=2;K þ Ex;Iþ1=2;J ;K

D
þOðD2Þ; ð4Þ
where the subscripts I, J, K indicate the quantity evaluated at (IDx,JDy,KDz) and Dx = Dy = Dz = D is as-

sumed. The curl can also be approximated using the values shown in red as
ẑ � r � Eð ÞIþ1=2;Jþ1=2;K ¼ Ey;Iþ2;Jþ1=2;K � Ex;Iþ1=2;Jþ2;K � Ey;I�1;Jþ1=2;K þ Ex;Iþ1=2;J�1;K

3D
þOðD2Þ ð5Þ
or using the values shown in blue as
ẑ � r � Eð ÞIþ1=2;Jþ1=2;K ¼ 1

6D
Ey;Iþ2;J�1=2;K þ Ey;Iþ2;Jþ3=2;K � Ex;Iþ3=2;Jþ2;K � Ex;I�1=2;Jþ2;K

�
�Ey;I�1;Jþ3=2;K

�Ey;I�1;J�1=2;K þ Ex;I�1=2;J�1;K þ Ex;Iþ3=2;J�1;K

�
þOðD2Þ: ð6Þ
Each of the above curl approximations is individually second order accurate. Thus, a linear combination is

also second order accurate, and the curl is approximated by K1 times Eq. (5) plus K2 times Eq. (6) plus

(1 � K1 � K2) times Eq. (4) [8]. Note that useful values of K1 and K2 are K1 6 0 and K2 = 0 or

K2 = 2K1. The case K1 = K2 = 0 recovers the standard Yee FDTD scheme, and the case K1 = �1/8,
K2 = 0 results in a fourth order accurate approximation to the curl operator.
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Fig. 3. Ex and Ey values used to compute $ · E to update Bz. The standard Yee FDTD scheme uses the values shown in green. The
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The dispersion relation for the extended stencil FDTD method is given by
Fig. 4.
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where
Fig. 5.

Fig. 6

ð6=7Þm
fa;b ¼
1
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: ð8Þ
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When K2 = 0, the maximum stable timestep for the extended stencil method is 1/(1 � (4/3)K1) times the

maximum stable timestep for the standard Yee method. When K2 = 2K1, the maximum stable timestep is
1/(1 � (8/3)K1) times the maximum stable timestep for the standard Yee method. The dispersion relation

is plotted for the case K1 = �1/8, K2 = 0 and Dx = Dy = Dz = D in Fig. 4. In comparing Figs. 4 and 2, note

that the situation in Fig. 4 is much improved. In Fig. 4, the 0.8c particles do not exceed the numerical prop-

agation speed for most timesteps until just before the grid cuts off the propagation. Note that the grid cut

off point in any direction corresponds the point where the dispersion curves reach their maximum and start

to decrease. As K1 becomes more negative, the situation improves even more, as demonstrated by Fig. 5.

Note, however, that as K1 becomes more negative, the maximum stable timestep also decreases. Similar

behavior is observed for the K2 = 2K1 case, as shown in Figs. 6 and 7.
Although the extended computational stencils to approximate the curl operator effectively eliminate the

numerical Cerenkov radiation, major difficulties remain a hindrance to their practical implementation

within a PIC code. First, it is difficult to find a particle current weighting scheme that is charge conserving

within the extended computational framework. Second, the extended stencils are problematic near material

boundaries boundaries in the grid. The stencil must be modified near a boundary, and this has ramifica-

tions on charge conservation and current weighting. Because of these difficult implementation issues, filter-

ing schemes are much more commonly used to eliminate numerical Cerenkov radiation.
4. Filtering

The Fourier transform is used to understand filtering schemes to eliminate numerical Cerenkov radi-

ation. After taking the Fourier transform in space and time, Maxwell�s curl equations (Eq. (1))

become:
x~B ¼ k� ~E;

x~E ¼ �c2k� ~B� igc~J:
ð9Þ
Exteνded steνcil νumerical disπersioν relatioν forK1¼∆1=8,K2¼2K1,∆x¼∆y¼∆z¼∆, aνd∆t¼m∆t;max¼ð3=4Þm∆=c=���3π.A.∆. Greeνωood et al. / Jourνal of Comπutatioνal Physics 201 (2004) 665�684671
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If a filter He(x) is applied to the electric field and a filter Hb(x) is applied to the magnetic flux density, these

equations become:
xHbðxÞ~B ¼ k� ~E;

xH eðxÞ~E ¼ �c2k� ~B� igc~J:
ð10Þ
The corresponding dispersion relation becomes
x2

HbðxÞH eðxÞc2
¼ k2x þ k2y þ k2z ¼ k2 ð11Þ
and the approximate dispersion relation in the Yee FDTD method becomes
1

HbðxÞH eðxÞc2D2
t

sin2 xDt

2

� �
¼ 1

Dx
sin

kxDx

2

� �� �2
þ 1

Dy
sin

kyDx

2

� �� �2
þ 1

Dz
sin

kzDx

2

� �� �2
: ð12Þ
In examining Eqs. (11) and (12), it is apparent that the magnitude of the filter alters the wave propaga-

tion speed and the phase of the filter introduces an imaginary part of x which, depending on its sign, cor-
responds to amplification or attenuation. Note that the magnitude response of the filter also impacts the

maximum stable timestep. Qualitatively, the maximum stable timestep must limit the propagation distance

of any wave that can exist on the numerical grid to one cell in a timestep. Thus, filters whose magnitude

response is greater than unity require a reduction in the maximum timestep while filters whose magnitude

response is less than unity may allow an increase in the maximum stable timestep. Note that in cases where

a single filter is applied, the filter can be equivalently applied either to E or B.

Ideally, the value of the filter should be unity (with zero phase) at low frequency so as not to affect the

physics of interest in the simulation. The goal of filtering schemes is to attenuate high-frequency waves that
may propagate slower than the high-energy particles in the simulation and cause numerical Cerenkov radi-

ation. This must be accomplished through the phase response of the filter. Thus, the ideal filter is an all pass

filter (magnitude response 1) with zero phase response at low frequency that becomes large at high fre-

quency to attenuate the poorly resolved frequencies that propagate too slowly and cause numerical Cere-

nkov radiation. An example of such a response is shown in Fig. 8.
|H (ω )|

ωc    
0 dB

Magnitude

∠ H(ω )

ω     
ωc    

Phase(a) (b)

Fig. 8. Ideal filter response for elimination of numerical Cerenkov radiation.
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4.1. Godfrey filter

Attention is now turned to two previously published filtering schemes. The scheme published by Godfrey

[4] uses the standard Yee update equation for the magnetic flux density and the following update equation

for the electric field:
−

−

|H
(

ω
)|,

 d
B

0

0

0

0

1

1

1

1

R
e(

ω
∆/

c/
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Enþ1 ¼ En þ c2Dtr� a1B
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; ð13Þ
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where the superscript n indicates the quantity evaluated at t = nDt and a1 + a2 + a3 = 1. This corresponds to

a filter Hb(x) = a1e
jxDt + a2 + a3e

�jxDt with He(x) = 1. Note that the filter is non-causal if a1 is non-zero and

that the standard Yee scheme is recovered when a1 = a3 = 0 and a2 = 1. In [4], an iterative relaxation scheme

is suggested for including the non-causal term.

The Godfrey filter is commonly used with a3 = 0. In this mode, the filter response is low-pass as
shown in Fig. 9(a). Note that this filter deviates from the ideally desired response in important ways.

First, the low-pass response of the filter slows the wave propagation at high frequency even further than

the standard Yee scheme. However, the slower propagation allows the maximum timestep to be in-
Fig. 10. Response of the Godfrey filter and corresponding filtered FDTD dispersion relation with a1 = 0, a2 = 1.1, a3 = �0.1. The

Nyquist cut off frequency for the filter is xc, and for the dispersion relation Dx ¼ Dy ¼ Dz ¼ D and Dt ¼ mDt;max ¼ ð10=11ÞmD=c=
ffiffiffi
3

p
.
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creased (by a factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4a1a3

p
), partially compensating for the increased computation time re-

quired by the iterative relaxation scheme. Second, the phase of the filter is linearly increasing near

x = 0, meaning that wave propagation is attenuated at all frequencies, including the frequencies of phys-

ical interest. The dispersion relation for the Yee FDTD method with the filter of Fig. 9(a) and (b) is

shown in Fig. 9(c) and (d). In comparing Fig. 9(c) to Fig. 2, note the slower wave propagation in
Fig. 9(c) at high frequency.

It is well known that shifting the impulse response of a filter leaves its magnitude response un-

changed but multiplies its phase response by a factor of e�jxt0, where t0 is the amount of time shift.

Thus, if the Godfrey filter is shifted in time to make it causal, the sign of the phase response changes

and the filter amplifies the high-frequency waves rather than attenuating them. A causal Godfrey filter

can be created, however, by setting a1 = 0 and a3 < 0. An example filter response and corresponding

dispersion relation are shown in Fig. 10. The magnitude of the filter is now larger than unity at high

frequency, corresponding to an increase in the high-frequency propagation speed. This results in a
reduction in the maximum stable timestep by a factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4a1a3

p
, but since the filter is causal,

the iterative relaxation scheme is no longer required. Note that the filter still attenuates propagation at

all frequencies.
4.2. Friedman filter

The scheme published by Friedman [5] and Rambo et al. [6] uses the standard Yee update equation for E

and the following update equation for B:
Bnþ1=2 ¼ Bn�1=2 � Dtr� 1þ h
2

� �
En � h 1� h

2

� �
En�1 þ 1

2
1� hð Þ2h�En�2

� �
; ð14Þ
where
�E
n�2 ¼ En�2 þ h�E

n�3 ð15Þ
and 0 6 h 6 1. Note that the standard Yee scheme is recovered when h = 0.

In contrast to the Godfrey scheme, which employs a finite impulse response (FIR) filter, the Friedman

scheme employs an infinite impulse response (IIR) filter. The impulse response is given by
he½n� ¼

0; n < 0;

1þ h=2; n ¼ 0;

�h 1� h=2ð Þ; n ¼ 1;

1� hð Þ2hn�1
h i

=2; n > 1:

8>>>><
>>>>:

ð16Þ
Note that because he[n] = 0 for all n < 0, the filter is causal, which greatly simplifies its implementation. The

frequency response of the filter is given by
H eðxÞ ¼ 1� 2hsin2 xDt=2ð Þ
ejxDt � h

: ð17Þ
The maximum timestep for the FDTD scheme with the Friedman filter is somewhat problematic to de-

rive. Assuming a Fourier mode solution of the form
EðIDx; JDy ;KDz; nDtÞ
BðIDx; JDy ;KDz; nDtÞ

� �
¼

E0

B0

� �
GneiðIkxDxþJkyDyþKkzDzÞ; ð18Þ
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a stable scheme requires jGj6 j. It can be shown that G satisfies:
G3 þ ð2þ hÞð2f 2 � 1ÞG2 þ ½1þ 2hð1� 4f 2Þ�Gþ hð2f 2 � 1Þ ¼ 0; ð19Þ

f ¼ cDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðkxDx=2Þ

Dx

� �2
þ sinðkyDx=2Þ

Dy

� �2
þ sinðkzDx=2Þ

Dz

� �2s
: ð20Þ
The magnitude of the roots of Eq. (19) is bounded by 1 if f 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ hÞ=ð1þ 3hÞ

p
. An upper bound is then

placed on Dt by noting that the maximum value of the quantity under the radical in Eq. (20) is

1=D2
x þ 1=D2

y þ 1=D2
z . While this limit on Dt is sufficient to prevent the numerical solution from growing

without bound, the behavior of the scheme changes dramatically at a practical limit slightly lower than
the stability limit. This can be seen by examining the root locus plots of Fig. 11. When the complex roots

shown in red and blue are on the unit circle, there is no damping in the scheme. For higher frequency waves,

these roots are inside the unit circle, indicating high-frequency damping in the scheme. For h < 0.1168 or

h > 1/2, there is a point where these two roots become real and equal (see Fig. 11(a)) and the behavior of the

scheme changes. Eq. (19) has at least two equal roots when
4hðhþ 2Þ2ð3h� 2Þðf 2Þ3 � 8hð2h3 � 5h2 þ 11h� 6Þðf 2Þ2 þ ðh� 1Þ2ð7h2 � 16hþ 1Þf 2 � ðh� 1Þ4 ¼ 0:

ð21Þ
For 0.1168 < h < 1/2, no real values of f satisfy Eq. (21), and Eq. (19) never has two equal roots. In this

case, Fig. 11(b) shows the situation, and the behavior of the scheme changes when the real parts of all three

roots of Eq. (19) are equal, which occurs when
ð2f 2 � 1Þ½4ðhþ 2Þ3ðf 2Þ2 � 4ðhþ 2Þðh� 1Þðh� 4Þf 2 þ ðh� 1Þ2� ¼ 0: ð22Þ
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Values of f2 that satisfy Eq. (21) can be found by defining
p ¼ � 8hð2h3�5h2þ11h�6Þ
4hðhþ2Þ2ð3h�2Þ ; a ¼ 1

3
3q� p2ð Þ;

q ¼ ðh�1Þ2ð7h2�16hþ1Þ
4hðhþ2Þ2ð3h�2Þ ; b ¼ 1

27
2p3 � 9pqþ 27rð Þ;

r ¼ � ðh�1Þ4

4hðhþ2Þ2ð3h�2Þ ; c ¼ 2
ffiffiffiffiffiffiffi
� a

3

p
;

W ¼ 1
3
Arccos 3b

ac

� �
:

ð23Þ
The roots of Eq. (21) are then given by
f 2
k ¼ c cos Wþ 2ðk � 1Þp

3

� �
� p
3
; ð24Þ
where k = 1, 2, 3. When 0 < h < 0.1168 or 1/2 < h < 2/3, f3 corresponds to the practical limit, and when

2/3 < h < 1, f1 corresponds to the practical limit. At h = 2/3, both f1 and f3 are discontinuous, and the prac-

tical limit is easily found by noting that Eq. (21) reduces to a quadratic equation in f 2. When 0.1168 < h <
1/2, a root of Eq. (22) corresponds to the practical limit, which is found to be
f 2
prac lim ¼

h�1

2ðhþ2Þ2 h� 4� 3
ffiffiffiffiffiffiffiffiffiffiffi
2� h

p� 

; 0:1168 < h < 0:3028;

1
2
; 0:3028 < h < 1=2:

8<
: ð25Þ
Most of the expressions for the practical limit are somewhat cumbersome to use; thus, a plot showing the

practical and stability limits is shown in Fig. 12. Once the practical limit on f is found, the corresponding
timestep is given by
Dt;prac lim ¼ fprac lim

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D2

x þ 1=D2
y þ 1=D2

z

q : ð26Þ
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Fig. 12. Comparison of the stability limit of the FDTD method with the Friedman filter with the practical limit.



Note that running the scheme between the practical limit and the stability limit does not result in a diver-

gent solution. However, physically undesirable behavior can result in this region, which is discussed in con-

nection with the FDTD dispersion relations below.

The Friedman filter frequency response and corresponding FDTD dispersion relation for h = 0.05 are

shown in Fig. 13. Note that the phase of the filter response is very close to the ideal response shown in
Fig. 8, which is characterized by flat, zero phase at low frequency and increasing phase leading to atten-

uation as the frequency increases. The magnitude of the filter response is characterized by a small ripple
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and increasing amplitude at high frequency. This is consistent with maximum timestep for the scheme

being slightly smaller that the maximum timestep for the unfiltered Yee scheme. If the scheme is run

at the stability limit, Fig. 13(d) shows that just before the 3D diagonal wave number cutoff at

kD ¼ p
ffiffiffi
3

p
, the imaginary part of the dispersion relation (and correspondingly the damping in the

scheme) goes abruptly to zero. This corresponds with the roots shown in red and blue in Fig. 11(a)
becoming real and equal before the stability limit. If the scheme is run at or below the practical limit

(corresponding to m = 0.9954), this undesirable behavior disappears. As a second example, the filter fre-

quency response and corresponding FDTD dispersion relation for h = 0.3 are shown in Fig. 14. In
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Fig. 14. Response of the Friedman filter and corresponding filtered FDTD dispersion relation with h = 0.3. The Nyquist cut off

frequency for the filter is xc, and for the dispersion relation Dx ¼ Dy ¼ Dz ¼ D and Dt ¼ mDt;max ¼ 0:8272mD=c=
ffiffiffi
3

p
. The practical

timestep limit is at m = 0.8579.
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comparing Figs. 13 and 14, note that the magnitude and phase response of the filter keep approximately

the same shape but vary in amplitude as h is varied. In Fig. 14(c), note that if the scheme is run at the

stability limit, the real dispersion curve corresponding to wave propagation along a 3D grid diagonal

peaks and begins to decrease well before its wave number cutoff at kD ¼ p
ffiffiffi
3

p
. This corresponds with

the roots shown in red and blue in Fig. 11(b) curling around so their real parts begin increasing. Similar
to the h = 0.05 case, if the scheme is run at or below the practical limit, the undesirable behavior disap-

pears. For h = 0.3, the practical limit corresponds to f = 0.7096 which is m = 0.8579.
Fig. 15. RMS value of the oscillating current (in the z-direction) at the center of the cylinder for each simulation. The numerical

filtering corresponds to the numerical dispersion diagrams shown in Figs. 2, 9, 13, and 14.
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4.3. Numerical filter examples

The effects of the different filtering schemes on a physical problem are now shown. The problem is a

right circular cylinder with a radius of 5 cm and a length of 10 cm. A 100 Ampere beam of 5 mm

radius moves directly down the center of the cylinder at a velocity of 0.8c. An axial magnetic field
of 1 T is included in the simulations to remove the fire-hose instability. A sausage like instability still

exists in this configuration, and the instability growth rate is affected by the simulation filtering scheme.

The simulations are executed with the same numerical parameters used to produce the numerical dis-

persion relations shown in Figs. 2, 9, 13, and 14. Note that the beam velocity is also shown in these

figures. For each simulation, the RMS value of the oscillating current (in the z-direction) at the center

of the cylinder is shown in Fig. 15. An intuitive understanding of the filtering methods is gained by

comparing the current oscillations in Fig. 15 to the damping shown in the dispersion diagrams in Figs.

2, 9, 13, and 14.
Fig. 16. A windowed Fourier transform of the current from a simulation using the Yee algorithm with m = 0.99. The fast growth of

numerical modes at normalized frequencies around one and a late time white noise spectrum are shown. The amplitude (color) in this

figure is plotted on a logarithmic scale.
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Focusing first on the unfiltered or standard Yee simulation, note that all the curves go though two

growth regions. The first is fast growing numerical Cerenkov radiation. In Fig. 16, the data from the

m = 0.99 simulation is shown with a windowed Fourier transform, and the fast growth of these modes

is noted at normalized frequencies around one. The amplitude (color) in the figure is plotted on a log-

arithmic scale. The dispersion diagram in Fig. 2 shows that the group velocity of these frequencies are
near zero and therefore the modes are not moving. Thus, these modes are stationary and are not con-

vected away. The second growth region is a complete break up of the beam. On the right hand side of

Fig. 16 note that most frequencies are excited resulting in an almost white noise spectrum. The ampli-

tude of the RMS current oscillations in Fig. 15 is close to the amplitude of the initial injected direct

current. This simulation is corrupted by the numerical Cerenkov radiation to the point that it has no

bearing on physical reality.

When the simulation is run with a h = 0.05 Friedman filter and a timestep corresponding to m = 0.85,

Fig. 17 shows that the high-frequency numerical modes are damped away. All simulations with h = 0.05
have enough damping that they do not go through the second growth region seen in the unfiltered case.
Fig. 17. A windowed Fourier transform of the current from a simulation using the Friedman filter with h = 0.05 and m = 0.85. The

high-frequency numerical modes are damped away. The amplitude (color) in this figure is plotted on a logarithmic scale.
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The simulation of Fig. 17 still shows a sausage like mode that grows at a normalized frequency of 0.178.

This mode is seen in the unfiltered case as well, but it is overwhelmed at late time. The �sausage� mode is

a wave-like density perturbation along the plasma column and is cylindrically symmetric about the col-

umn axis. The harmonics of the �sausage� mode that are seen at late time drop off exponentially up to a

normalized frequency of 1.3, as shown in Fig. 18. Note that a normalized frequency of 1.3 is the highest

frequency supported by discretization in this simulation. In Fig. 15, note further that the �sausage�
growth rate is being altered by the Friedman filter as the Courant value is changed. The larger Courant

values result in more damping. If simulation damping is increased even more by using a Friedman filter

with h = 0.3 or a Godfrey filter with a1 = 1/8, a2 = 7/8, a3 = 0, then the �sausage� instability is damped

completely away with the exception of using the h = 0.3 Friedman filter with m = 0.1, which has the least

damping of these cases. This example shows that these filters should not be used blindly. The physics of

interest in a simulation should be at a frequency that is not significantly altered by the filter employed.

In this respect, the Friedman filter is a better filter because the damping term has a zero slope going

though the origin on the dispersion diagram, whereas the Godfrey filter has a damping term propor-
tional to k near the origin. Thus, although the h = 0.05 Friedman filter and the a1 = 1/8, a2 = 7/8,

a3 = 0 Godfrey filter have the same maximum damping, the Friedman filter shows the �sausage� mode

instability, but the Godfrey filter suppresses it.
5. Conclusion

Many PIC codes use the Yee FDTD method to model electromagnetic fields. This method is simple and
robust, and a wealth of research is available from the computational electromagnetics community.
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However, the Yee FDTD method also allows poorly resolved radiation near the grid cut off to propagate

more slowly than the physical speed of light. When high-energy particles are present in the simulation, this

leads to numerical Cerenkov radiation which corrupts the simulation. There are two methods of dealing

with the numerical Cerenkov radiation: the problem can be eliminated by changing the computational sten-

cil used to approximate the curl operator, and filtering can be introduced to attenuate the poorly resolved
waves which cause the numerical Cerenkov radiation.

In examining different computational stencils for approximating the curl operator, it is found that sten-

cils can be introduced which lead to numerical dispersion relations that eliminate the slowly traveling,

poorly resolved radiation. However, these stencils are larger than the standard Yee computational stencil.

Thus, boundary conditions and particle current weighting are extremely difficult to implement while main-

taining a charge conserving numerical scheme. Thus, this method is not commonly used to eliminate

numerical Cerenkov radiation.

Filtering schemes attempt to attenuate the poorly resolved high frequencies which lead to numerical
Cerenkov radiation. When using filtering schemes, care must be taken not to alter the physics of interest

in the numerical simulation. In examining the effect of filters on the wave dispersion relation, it is found

that the ideal filter is characterized by an all pass magnitude response with zero phase in the frequency band

of physical interest and increasing phase as the slowly traveling high frequencies near the grid cut off point

are approached. Note that the ideal filter is not a low-pass filter.

The previously published scheme by Godfrey corresponds to a finite impulse response filter involving

three samples. This filter is effective in eliminating numerical Cerenkov radiation, but because it is non cau-

sal it must be implemented using an iterative relaxation technique. The filter further has non-zero phase at
all frequencies meaning that it attenuates radiation in the frequency band of physical interest.

The previously published scheme by Friedman corresponds to an infinite impulse response filter. The fil-

ter is causal and is characterized by a nearly ideal phase response. The magnitude response becomes larger

than unity at high frequency, which increases the wave propagation speed at high frequency. This further

reduces the numerical Cerenkov radiation but also requires a slight reduction in the maximum stable sim-

ulation timestep.

The derivation of the effect of filters on the wave dispersion relation contained in this paper allows fil-

tering schemes to be analyzed and compared. It also leads to understanding of the ideally desired filter re-
sponse. It is now possible to optimize filters to eliminate numerical Cerenkov radiation in PIC codes while

preserving the physics of interest in the simulation.
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